

TETRAHEDRON

Tetrahedron 59 (2003) 8227-8232

Three novel nortriterpenoids from *Notochaete hamosa* Benth. (Labiatae)

Yinggang Luo,^{a,b} Chun Feng,^c Yajuan Tian,^a Bogang Li^a and Guolin Zhang^{a,*}

^aChengdu Institute of Biology, The Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
 ^bChengdu Institute of Organic Chemistry, The Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
 ^cAnalyzing and Testing Center, Sichuan Normal University, Chengdu 610066, People's Republic of China

Received 5 March 2003; revised 16 July 2003; accepted 13 August 2003

Abstract—Three nortriterpenoids, notohamosin A (1), B (2) and C (3) with novel skeleton, and eight known compounds were isolated from the ethanol extract of the whole plants of *Notochaete hamosa* Benth. (Labiatae). On the basis of spectral evidence including 1D, 2D NMR, IR and MS data, their structures were elucidated. The relative configurations of compounds 1, 2 and 3 were determined according to NOESY experiments.

© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Notochaete hamosa Benth., one of the two plants of the genus *Notochaete* (Labiatae), is distributed in Southwest China, Nepal, India and Burma at an altitude of 1200–2500 m, and usually found in the edge of sub-tropical green-forest.^{1,2} No chemical study on the plants of this genus was reported. This study led to the isolation of three new nortriterpenoids, notohamosin A (1), B (2) and C (3) possessing novel skeleton, and eight known compounds, β -sitosterol (4),³ shanzhiside (5),⁴ daucosterol (6),³ 3,5-dimethoxy-4-hydroxybenzoic acid (7),⁵ martynoside (8),⁶ pinoresinol (9),⁷ desrhamnosyl acteoside (10),⁸ and acteoside (11).⁹ Their structures were elucidated by spectral evidence. The relative configurations of compounds 1, 2 and 3 were determined by NOESY experiments.

2. Results and discussion

The ethanol extract of the whole plants of *N. hamosa* was divided into petroleum ether-, EtOAc- and *n*-BuOH-soluble fractions. Compounds 1-7 were isolated from the EtOAc-soluble extract, 8-11 from the *n*-BuOH-soluble fraction by column chromatography.

Notohamosin A (1) was obtained as a white powder. The color of 1 in acetic anhydride changed from red to dark-blue

after being reacted with Liebermann-Burchard reagent. The molecular formula $C_{29}H_{46}O_5$ was calculated from the quasi-molecular ion peak at m/z 475.3395 [M+H]⁺ in the HRAPCIMS (positive). Twenty-eight signals recognized in the ¹³C NMR spectrum (DEPT, Table 1) represent 29 C-atoms in view of one overlapped signal which was confirmed by the HMOC cross signals at δ 1.50, 1.35 and 1.90, 1.58/32.7 (t). The ¹H NMR signals at δ 1.13, 0.84, 0.92 and 1.27 (each 3H, s) indicated four methyl groups at quaternary carbon atoms (H₃-25, H₃-26, H₃-27 and H₃-28) (Table 1). Three hydroxymethyl groups located on quaternary C-atoms were postulated from the HMQC cross signals at δ 4.63 and 4.43 (each 1H, d, J=10.8 Hz, H₂-23)/68.8 (t, C-23), 4.21 and 4.09 (each 1H, d, J=11.0 Hz, H₂-24)/63.5 (t, C-24), and 3.66 and 3.60 (each 1H, d, J=10.2 Hz, H₂-29)/70.8 (t, C-29). One Z-double bond (C-11 and C-12) was deduced from ¹H NMR signals at δ 5.73 and 6.00 (each 1H, d, J=10.0 Hz). One tri-substituted double bond (C-13 and C-18) was provided by the ¹H NMR signal at δ 5.52 (1H, s) and ¹³C NMR signals (DEPT) at δ 136.1 (d) and 139.1 (s). The evidence mentioned above led to the conclusion that compound **1** is a nortriterpene.

Four moieties a, b, c and d were established from ¹H NMR and ¹³C NMR spectral data, and HMQC and HMBC experiments (Table 1 and Fig. 1). The quaternary carbon atom resonated at δ 44.9 (s) could be assigned to C-17 according to the ¹H NMR signal at δ 5.52 (1H, s) for H-18. Thus, skeleton **1A** (Fig. 1) was determined.

Another two hydroxyl groups, concluded from molecular formula, could be located at C-2 and C-3 according to the HMQC correlation δ 4.50 (1H, brd, *J*=11.2 Hz, H-2)/66.1

Keywords: Notochaete hamosa Benth; nortriterpeonids; notohamosin A; notohamosin B; notohamosin C.

^{*} Corresponding author. Tel./fax: +86-28-85225401;

e-mail: zhanggl@cib.ac.cn

Y. Luo et al. / Tetrahedron 59 (2003) 8227-8232

	$\delta_{ m H}{}^{ m a,b}$	$\delta_{\rm C}^{\rm b,c}$	HMBC (selected)	NOESY (selected)
CH ₂ (1)	2.27 (1H, dd, 11.2, 3.6), 1.92 (1H, m)	42.7 (t)		
H-C(2)	4.50 (1H, brd, 11.2)	66.1 (d)		H ₂ -24, H ₃ -25
H-C(3)	4.91 (1H, s)	73.7 (d)	C-1, C-2, C-5	2, 5
C(4)		47.5 (s)		
H-C(5)	2.23 (1H, brd, 12.4)	44.4 (d)	C-4, C-6, C-24, C-25	H-9, H ₂ -23
CH ₂ (6)	1.01 (m), 0.82 (m)	18.9 (t)		, 2
$CH_2(7)$	1.50 (m), 1.35 (m)	32.7 (t)		
C(8)		41.0(s)		
H-C(9)	2.37 (1H, s)	54.7 (d)	C-10, C-25, C-11, C-26	H-5, H ₃ -27
C(10)		38.0 (s)	, , - ,	- , 5
H-C(11)	5.73 (1H, d, 10.0)	125.9 (d)	C-8, C-10, C-13	H-12
H - C(12)	6.00 (1H, d, 10.0)	130.7 (d)	C-9, C-14, C-18	H-11, H-18
C(13)		139.1 (s)		, -
C(14)		40.4 (s)		
CH ₂ (15)	1.66 (m), 1.03 (m)	26.3 (t)		
$CH_{2}(16)$	1.90 (m), 1.58 (m)	32.7 (t)		
C(17)		44.9 (s)		
H-C(18)	5.52 (1H, s)	136.1 (d)	C-12, C-16, C-19, C-22	H-12, Ha-19
CH ₂ (19)	(a) 1.97 (1H, d, 13.2)	52.0 (t)		H-18, H ₂ -29
200	(b) 1.37 (1H, d, 13.2)			, 2
C(20)		44.6 (s)		
CH ₂ (21)	1.97 (m), 1.50 (m)	35.6 (t)		
$CH_{2}(22)$	1.68 (m), 1.60 (m)	39.6 (t)		H ₃ -27
$CH_{2}(23)$	4.63 (1H, d, 10.8)	68.8 (t)	C-3, C-4, C-5, C-24	Н-5
2(-)	4.43 (1H, d, 10.8)			
CH ₂ (24)	4.21 (1H, d, 11.0)	63.5 (t)	C-3, C-4, C-23	H-2, H ₃ -25
- 20 /	4.09 (1H, d, 11.0)			. 5
Me(25)	1.13 (3H, s)	19.2 (q)	C-1, C-10, C-9, C-5	H-2, H ₂ -24, H ₃ -26
Me(26)	0.84 (3H, s)	16.7 (q)	C-9, C-8, C-14, C-7	H ₃ -25
Me(27)	0.92 (3H, s)	20.0 (q)	C-13, C-14, C-15	H-9, H ₂ -22
Me(28)	1.27 (3H, s)	26.9 (q)	C-19, C-20, C-21, C-29	· -
CH ₂ (29)	3.66 (1H, d, 10.2) 3.60 (1H, d, 10.2)	70.8 (t)	C-19, C-21, C-28, C-20	Ha-19

Table 1. NMR data of compound 1 in pyridine-d₅

^a J in Hz.

^b Signals were assigned by HMQC, HMBC and COSY experiments, δ in ppm.

^c Multiplicity were determined by DEPT.

(d, C-2) and 4.91 (1H, s, H-3)/73.7 (d, C-3) and HMBC correlations between H-3 and C-1, C-2 and C-5. The relative configurations of C-2, C-3, C-5, C-8, C-9, C-10, C-14, C-17 and C-20 were determined by NOESY experiments (Fig. 1 and Table 1). The 2-OH group should be α -orientated considering the NOESY correlations between H-2 and H₃-25, and between H-2 and H₂-24. The negligible coupling constant between H-2 and H-3 revealed 3α -OH. The NOESY correlations between H-5 and H-9, between H-5 and H₂-23, and between H-9 and H₃-27 indicated α -oriented H-5, H-9 and H₃-27. The relative configuration of C-17 was determined upon the NOESY cross signals between H₃-27 and H₂-22. The NOESY correlation between $\delta_{\rm H}$ 5.52 (H-18) and $\delta_{\rm H}$ 1.97 suggested that the proton resonated at $\delta_{\rm H}$ 1.97 should be α -oriented (H-19a). The key NOESY correlation between H-19a and H_2-29 suggested 20 α -CH₂OH group (C-29). Thus, the structure of notohamosin A (1) was established as that illustrated in Figure 1.

The visualization of notohamosin **B** (2) with Liebermann– Buchard reagent was the same as that of **1**. The quasimolecular ion peak at m/z 459.3454 in the HRAPCIMS (positive) of **2** provided the molecular formula $C_{29}H_{46}O_4$. Twenty-nine signals observed in the ¹³C NMR spectrum, five methyl groups and two hydroxymethyl groups at quaternary C-atoms recognized from the ¹H NMR spectrum suggested that **2** is also a nortriterpene (Fig. 1 and Table 2). Comparing the NMR data and MS data of **2** with those of **1**, it is obvious that **2** bears one more methyl group and one less hydroxymethyl group than **1**. C-24 of **2** was not substituted by a hydroxyl group, which was confirmed by HMQC correlation at $\delta 0.90$ (3H, s, H₃-24)/17.1 (q, C-24), HMBC cross signals between H₃-24 and C-4, C-3 and C-23 (Table 2), as well as NOESY correlations between H₃-24, H-2 and H₃-25 (Fig. 1 and Table 2). **2A** (Fig. 1) was postulated on the basis of HMQC and HMBC experiments. The relative configurations of C-2, C-3, C-4, C-5, C-8, C-9, C-10, C-14, C-17 and C-20 were determined to be the same as those in compound **1** based on the NOESY experiments (Fig. 1 and Table 2). Thus, the structure of **2** (notohamosin **B**) could be determined as that depicted in Figure 1.

Notohamosin C (3) was isolated as a white powder. In the ¹H NMR spectrum four methyl groups at quaternary C-atom (H₃-25, H₃-26, H₃-27 and H₃-28) resonated at δ 1.16, 1.00, 1.02 and 1.04 (each 3H, s) (Table 3). The ¹H NMR signals at δ 4.59 and 4.40 (each d, *J*=10.5 Hz), 4.22 and 4.07 (each d, *J*=11.0 Hz), as well as ¹³C NMR signals at δ 69.2 (t) and 64.2 (t) (Table 3), could be assigned to two hydroxymethyl groups at quaternary C-atom. One methoxy group was deduced from HMQC signal at δ 3.36 (3H, s)/54.7 (q). One tri-substituted double bond (C-12 and C-13) was suggested by the ¹H NMR signal at δ 6.07 (IH, t, *J*=2.0 Hz) and ¹³C

Figure 1. Structures of 1, 2 and 3, and major HMBC (\rightarrow) and key NOESY correlation (\leftrightarrow) .

NMR signals (DEPT) at δ 119.2 (d) and 138.5 (s). The quasi-molecular ion peak [M+H]⁺ at *m*/*z* 505.3515 in HRAPCIMS gave the molecular formula C₃₀H₄₈O₆. From ¹H NMR, ¹³C NMR, HMBC and HMQC (Table 3), structure **3A** (Fig. 1) was concluded.

oxygenated C-16 in view of the HMQC correlation at δ 4.24 (1H, brs, H-16)/74.9 (d, C-16) and HMBC cross signal at δ 1.06 (1H, d, *J*=11.0 Hz, Hb-19)/74.9 (d, C-16). The HMQC signal at δ 4.33 (1H, s, H-29)/106.8 (d, C-29) suggested that C-29 should be an acetal carbon atom. From the HMBC correlation between H-29 and C-16 and the molecular formula of compound **3**, it could be

Y. Luo et al. / Tetrahedron 59 (2003) 8227-8232

	$\delta_{ m H}{}^{a,b}$	$\delta_{C}^{b,c}$	HMBC (selected)	NOESY (selected)
CH ₂ (1)	2.22 (1H, dd, 12.0, 4.0) 1.86 (1H, t, 12.0)	42.3 (t)		
H-C(2)	4.34 (1H, brd, 12.0)	66.0 (d)		H ₂ -24, H ₃ -25
H-C(3)	4.17 (1H, s)	78.8 (d)	C-1, C-2, C-5	2 7 5 -
C(4)		41.8 (s)	- , - ,	
H-C(5)	2.21 (1H, brd, 11.6)	43.3 (d)	C-4, C-6, C-24, C-25	H-9, H ₂ -23
CH ₂ (6)	1.02 (m), 0.82 (m)	18.2 (t)	- ,, - ,	- , 2 -
$CH_2(7)$	1.48 (m), 1.34 (m)	32.1 (t)		
C(8)		41.0(s)		
H-C(9)	2.33 (1H, s)	54.5 (d)	C-10, C-25, C-11, C-26	H-5, H ₃ -27
C(10)		38.0 (s)	,, - ,	- , 5 -
H-C(11)	5.71 (1H, d, 10.0)	130.7 (d)	C-8, C-10, C-13	H-12
H - C(12)	6.00 (1H, d, 10.0)	125.9 (d)	C-9, C-14, C-18	H-11. H-18
C(13)		139.0 (s)		, -
C(14)		40.4 (s)		
CH ₂ (15)	1.66 (m), 1.03 (m)	26.3 (t)		
CH ₂ (16)	1.73 (m), 1.65 (m)	32.7 (t)		
C(17)		44.9 (s)		
H-C(18)	5.53 (1H, s)	136.1 (d)	C-12, C-16, C-19, C-22	H-12, Ha-19
CH ₂ (19)	(a) 1.93 (1H, d, 13.2)	52.0 (t)		H-18, H ₂ -29
-	(b) 1.35 (1H, d, 13.2)			
C(20)		44.6 (s)		
CH ₂ (21)	2.00 (m), 1.55 (m)	35.6 (t)		
CH ₂ (22)	1.68 (m), 1.60 (m)	39.6 (t)		H ₃ -27
CH ₂ (23)	3.91 (1H, d, 10.8)	71.1 (t)	C-3, C-4, C-5, C-24	H-5
	3.77 (1H, d, 10.8)			
Me(24)	0.90 (3H, s)	17.1 (q)	C-3, C-4, C-5, C-23	H-2, H ₃ -25
Me(25)	1.13 (3H, s)	19.4 (q)	C-1, C-10, C-9, C-5	H-2, H ₂ -24, H ₃ -26
Me(26)	0.85 (3H, s)	16.8 (q)	C-7, C-8, C-9, C-14	H ₃ -25
Me(27)	0.93 (3H, s)	20.0 (q)	C-13, C-14, C-15	H-9, H ₂ -22
Me(28)	1.27 (3H, s)	26.8 (q)	C-19, C-20, C-21, C-29	· 2
CH ₂ (29)	3.66 (1H, d, 10.0) 3.60 (1H, d, 10.0)	70.6 (t)	C-19, C-20, C-21, C-28	Ha-19

Table 2. NMR	data o	of compo	und 2 in	pyridine-d5

^a J in Hz.

^b Signals were assigned by HMQC, HMBC and COSY experiments, δ in ppm.

^c Multiplicity were determined by DEPT.

concluded that C-16 and C-29 should be connected via an ether bond. The assignment of ring F was then achieved according to the key HMBC correlations derived from H-29 with C-16, C-19 and 29-OCH₃, from H₃-28 with C-19, C-20, C-21 and C-29, and from H-19 with C-16, C-17, C-20, C-21 and C-29.

C-2 and C-3 were found to be substituted by hydroxyl groups by comparing its ¹³C NMR data with those of **1**. The relative configurations of C-2, C-3, C-4, C-5, C-8, C-9, C-10 and C-14 were determined to be the same as those in compound **1** based on the NOESY experiments (Fig. 1 and Table 3). H-16 and 29-OCH₃ should be α -oriented in view of NOESY correlations between H-16 and H₃-27, and between H-16 and 29-OMe (Fig. 1 and Table 3). The relative configuration of C-17 was assigned by NOESY correlation between H-16 and Ha-22. The relative configuration of C-29 could be determined by taking the rigidities of rings D, E and F into account, which was confirmed by the key NOESY correlation between H-29 and H₃-28. Therefore, the structure of compound **3** was determined as shown in Figure 1.

The known compounds, β -sitosterol (4),³ shanzhiside (5),⁴ daucosterol (6),³ 3,5-dimethoxy-4-hydroxybenzoic acid (7),⁵ martynoside (8),⁶ pinoresinol (9),⁷ desrhamnosyl acteoside (10),⁸ and acteoside (11)⁹ were identified by co-

TLC with authentic samples and by comparison of their spectral data with those reported.

3. Experimental

3.1. General

Melting points were determined on an XRC-1 micromelting point apparatus and are uncorrected. Optical rotations were measured on a Perkin-Elmer 241 automatic polarimeter. IR spectra were recorded on a Nicolet Protege 460 spectrometer using KBr disc and ν_{max} are given in cm^{-1} . ¹H NMR (500 MHz) and ¹³C NMR (125 MHz) spectra were recorded at room temperature with a Brucker Avance 500 spectrometer. The chemical shifts (δ) are given in ppm and the coupling constants (J) are given in Hz. HRAPCIMS were obtained on a BRUCKER FTMS APEX3 mass spectrometer. FABMS were obtained on a VG AutoSpec-3000 (glycerol as matrix) mass spectrometer. ESIMS were carried out on a Finnigan LCQ^{DECA} mass spectrometer. EIMS were obtained on a VG 7070E (70 eV) mass spectrometer. Column Chromatography (CC) was performed on self-packed open column with 200-300 mesh of silica gel purchasing from Qingdao Ocean Chemical Engineering Company (QOCEC). Thin Layer Chromatography (TLC) analyses were made on plates precoated with

Table 3. NM	R data	of com	pound 3	in pyridine-d
1 4010 0. 1 111.	ii uuuu	or com	pound c.	m pyname a

	$\delta_{ m H}{}^{a,b}$	$\delta_{\rm C}{}^{\rm b,c}$	HMBC (selected)	NOESY (selected)	
CH ₂ (1)	2.06 (1H, dd, 11.0, 2.0) 1.86 (1H, m)	43.4 (t)			
H-C(2)	4.44 (1H, dt, 11.0, 2.0)	66.4 (d)		H ₂ -24, H ₃ -25	
H-C(3)	4.85 (1H, d, 2.0)	73.8 (d)	C-1, C-5, C-4, C-2, C-24	2 7 5 -	
C(4)		47.6 (s)			
H-C(5)	2.15 (1H, brd, 11.5)	44.9 (d)	C-23, C-24, C-25, C-4, C-10, C-7, C-6	H-9, H ₂ -23	
CH ₂ (6)	1.87 (m), 1.65 (m)	19.0 (t)		, 2	
$CH_2(7)$	1.65 (m), 1.42 (m)	34.5 (t)			
C(8)		39.8 (s)			
H-C(9)	1.83 (1H, s)	48.0 (d)	C-10, C-25, C-26	H-5, H ₃ -27	
C(10)		38.3 (s)			
$CH_2(11)$	2.04 (2H, m)	23.4 (t)			
H - C(12)	6.07 (1H, t, 2.0)	119.2 (d)			
C(13)		138.5 (s)			
C(14)		44.2 (s)			
CH ₂ (15)	1.56 (m), 0.98 (m)	27.6 (t)			
H-C(16)	4.24 (1H, brs)	74.9 (d)		H ₃ -27, Ha-22, H-OMe	
C(17)		46.4 (s)		-	
CH ₂ (18)	1.82 (m), 1.01 (m)	28.8 (t)			
CH ₂ (19)	(a) 1.94 (1H, d, 11.0)	44.9 (t)	C-16, C-17, C-18, C-20, C-21, C-22, C-28, C-29	H-16	
	(b) 1.06 (1H, d, 11.0)				
C(20)		43.7 (s)			
CH ₂ (21)	(a) 1.72 (1H, dd, 12.5, 4.0)	36.0 (t)			
	(b) 1.30 (1H, dd, 12.5, 4.0)				
CH ₂ (22)	(a) 1.63 (1H, d, 13.0)	31.2 (t)		H-16	
	(b) 1.20 (1H, d, 13.0)				
CH ₂ (23)	4.59 (1H, d, 10.5)	69.2 (t)	C-3, C-4, C-5, C-24	H-5	
	4.40 (1H, d, 10.5)				
CH ₂ (24)	4.22 (1H, d, 11.0)	64.2 (t)	C-3, C-4, C-5, C-23	H-2, H ₃ -25	
	4.07 (1H, d, 11.0)				
Me(25)	1.16 (3H, s)	17.4 (q)	C-1, C-10, C-9, C-5	H-2, H ₂ -24, H ₃ -26	
Me(26)	1.00 (3H, s)	17.7 (q)	C-9, C-8, C-14, C-7	H ₃ -25	
Me(27)	1.02 (3H, s)	22.9 (q)	C-13, C-14, C-15	H-9, H-16	
Me(28)	1.04 (3H, s)	21.8 (q)	C-19, C-20, C-21, C-29	H-29	
H-C(29)	4.33 (1H, s)	106.8 (d)	C-16, C-19, C-OMe	H ₃ -28	
-OMe	3.36 (3H, s)	54.7 (q)	C-29	H-16	

^a J in Hz.

 $^{\rm b}$ Signals were assigned by HMQC, HMBC and COSY experiments, δ in ppm.

^c Multiplicity were determined by DEPT.

 $10-40 \ \mu m$ of silica gel G purchasing from QOCEC. Visualization on TLC was carried out by spraying 8% phosphomolybdic acid–ethanol solution (w/v) followed by heating. Fractions from all columns were generally collected by hand and auto-collect apparatus according to TLC analyses.

3.2. Plant material

The whole plants of *N. hamosa* Benth. were collected from Wuliangshan, Jingdong County, Yunnan Province, China, in September 1999, and identified by Professor X. W. Li (Kunming Institute of Botany, the Chinese Academy of Sciences). A voucher specimen (GF-05) is deposited at the Herbarium of Chengdu Institute of Biology, the Chinese Academy of Sciences.

3.3. Extraction and isolation

A sample of cut and dried whole plants (7.2 kg) was soaked with 92% ethanol (50 L×3, seven days each time) at room temperature. After being concentrated in vacuum, ca. 990 g residue was obtained. The syrup was dissolved in warm water 2.0 L (about 50°C), cooled to room temperature and successively extracted with petroleum ether ($60-90^{\circ}C$) (1.0 L×10), ethyl acetate (1.0 L×10) and *n*-BuOH (0.5 L×12).

The EtOAc-partitionated extract (50 g) was divided into five fractions FrB1-5 by CC gradient eluted with CHCl₃/MeOH (from 20:1, 10:1 to 5:1, elute was combined after TLC analyses). Compounds 1 (25 mg) and 2 (22 mg) were obtained from FrB2 by CC repeatedly eluted with petroleum ether $(60-90^{\circ}C)$: acetone (4:1). **3** (18 mg) was isolated from FrB3 by CC eluted with CHCl₃:MeOH (15:1). FrB1 was subjected to CC repeatedly eluted with petroleum ether $(60-90^{\circ}C)$: acetone (4:1) to give compounds 4 (108 mg) and 5 (12 mg). Compound 6 (1.08 g) was precipitated from FrB5. Compound 7 (36 mg) was isolated from FrB4 by CC eluted with CHCl₃:MeOH (15:1). The n-BuOH extract (161 g) was dissolved in 1.2 L of warm water (about 50°C) and absorbed on CC packed with macroporus resin (D_{101}) . The CC was eluted by water until no sugar in the elute was detected, then eluted by MeOH to yield 43 g residue, which was divided into four fractions FrC1-4 by CC eluted with CHCl₃:MeOH:acetone (4:1:1). Compound 8 (23 mg) was obtained from FrC1 by CC eluted with CHCl₃:MeOH (5:1). Compound 9 (18 mg) were isolated from FrC2 by CC eluted with CHCl₃:MeOH:H₂O (4:1:0.1). FrC3 was first separated by CC with CHCl₃:MeOH:H₂O (4:1:0.1), then separated by

CC packed with C-18 bonded silica gel with the elution of acetonitrile and water (1:3) to yield compounds **10** (67 mg) and **11** (44 mg).

3.3.1. Notohamosin A (1). White powder; mp 298–300°C (CHCl₃:CH₃OH (10:1)); $[\alpha]_{20}^{20} = -54$ (*c* 0.001, MeOH: pyridine (10:1)); IR ν_{max} (KBr): 3385, 2940, 2857, 1638, 1448, 1378 and 1033 cm⁻¹; HRAPCIMS (positive) *m/z*: 475.3395 ([M+H]⁺, C₂₉H₄₇O₅, calcd: 475.3418); FABMS (negative) *m/z* (rel. int): 565 (46, [M+glycerol-H]⁻) and 473 (100, [M-H]⁻); ESIMS (positive) *m/z* (rel. int): 971 (76, [2M+Na]⁺) and 497 (100, [M+Na]⁺); ESIMS (negative) *m/z* (rel. int): 983 (30, [2M+Cl]⁻), 509.6 (22, [M+Cl]⁻) and 473 (100, [M-H]⁻); EIMS *m/z* (rel int): 474 (16, [M]⁺), 456 (21, [M-H₂O]⁺), 438 (14, [M-2×H₂O]⁺), 325 (100); NMR data, see Table 1.

3.3.2. Notohamosin B (2). White powder; mp 284–286°C (CHCl₃:CH₃OH (10:1)); $[\alpha]_{20}^{20} = -25$ (*c* 0.001, MeOH: pyridine (10:1)); IR ν_{max} (KBr): 3424, 2927, 2857, 1638, 1459 and 1041 cm⁻¹; HRAPCIMS (positive) *m/z*: 459.3454 ([M+H]⁺, C₂₉H₄₇O₄, calcd: 459.3469); FABMS (negative) *m/z* (rel. int): 549 (46, [M+glycerol-H]⁻) and 457 (100, [M-H]⁻); ESIMS (positive) *m/z* (rel. int): 939 (100, [2M+Na]⁺) and 481 (70, [M+Na]⁺); ESI-MS (negative) *m/z* (rel. int): 951 (10, [2M+CI]⁻), 915 (20, [2M-H]⁻) and 458 (100, [M]⁻); EIMS *m/z* (rel. int): 458 (27, [M]⁺), 440 (19, [M-H₂O]⁺), 325 (100); NMR data, see Table 2.

3.3.3. Notohamosin C (3). White powder; mp 272–274°C (CHCl₃:CH₃OH (10:1)); $[\alpha]_D^{20}$ =+44.4 (*c* 0.064, MeOH: pyridine (10:1)); IR ν_{max} (KBr): 3424, 2923, 2855, 1638, 1457, 1377 and 1042 cm⁻¹; HRAPCIMS (positive) *m/z*:

505.3515 ($[M+H]^+$, $C_{30}H_{49}O_6$, calcd: 505.3524); FABMS (negative) m/z (rel. int): 595 (30, $[M+glycerol-H]^-$) and 503 (100, $[M-H]^-$); ESIMS (positive) m/z (rel. int): 1031 (60, $[2M+Na]^+$) and 527 (100, $[M+Na]^+$); ESIMS (negative) m/z (rel. int): 1043 (10, $[2M+Cl]^-$),1007 (16, $[2M-H]^-$), 539.9 (10, $[M+Cl]^-$) and 503 (100, $[M-H]^-$); EIMS m/z (rel.int): 235 (100); NMR data, see Table 3.

References

- 1. Institute of Botany, the Chinese Academy of Sciences, *Familiarum Generumque Cormophytorum Sinicorum*; Science Publishing House: Beijing, 1979; p 365.
- 2. Institute of Botany, the Chinese Academy of Sciences, *Iconographia Cormophytorum Sinicorun, Tomus II*; Sciences Publishing House: Beijing, 1974; p 644.
- Kojima, H.; Sato, N.; Hatano, A.; Ogura, H. *Phytochemistry* 1990, 29, 2351–2355.
- Achenbach, H.; Waibel, R.; Raffelsberger, B.; Addae-Mensah, I. *Phytochemistry* 1981, 20, 1591–1595.
- Sadtler Research Laboratories, Division of Bio-Rad Laboratories, Inc., SADTLER Carbon-13 Nuclear Magnetic Resonance Spectra, 1979; p 6458c.
- Calis, I.; Lahloub, M. F.; Rogenmoser, E.; Sticher, O. Phytochemistry 1984, 23, 2313–2315.
- Pelter, A.; Ward, R. S.; Watson, D. J.; Collins, P. J. Chem. Soc., Perkin Trans. 1 1982, 175–181.
- 8. Matsumoto, M.; Koga, S.; Shoyama, Y.; Nishioka, I. Phytochemistry 1987, 26, 3225-3227.
- Nishimura, H.; Sasaki, H.; Inagaki, N.; Chin, M.; Mitsuhashi, H. Phytochemistry 1991, 30, 965–969.

8232